1,115 research outputs found

    Modeling and removal of optical ghosts in the PROBA-3/ASPIICS externally occulted solar coronagraph

    Full text link
    Context: ASPIICS is a novel externally occulted solar coronagraph, which will be launched onboard the PROBA-3 mission of the European Space Agency. The external occulter will be placed on the first satellite approximately 150 m ahead of the second satellite that will carry an optical instrument. During 6 hours per orbit, the satellites will fly in a precise formation, constituting a giant externally occulted coronagraph. Large distance between the external occulter and the primary objective will allow observations of the white-light solar corona starting from extremely low heights 1.1RSun. Aims: To analyze influence of optical ghost images formed inside the telescope and develop an algorithm for their removal. Methods: We implement the optical layout of ASPIICS in Zemax and study the ghost behaviour in sequential and non-sequential regimes. We identify sources of the ghost contributions and analyze their geometrical behaviour. Finally we develop a mathematical model and software to calculate ghost images for any given input image. Results: We show that ghost light can be important in the outer part of the field of view, where the coronal signal is weak, since the energy of bright inner corona is redistributed to the outer corona. However the model allows to remove the ghost contribution. Due to a large distance between the external occulter and the primary objective, the primary objective does not produce a significant ghost. The use of the Lyot spot in ASPIICS is not necessary.Comment: 14 pages, 13 figure

    Low-Altitude Reconnection Inflow-Outflow Observations during a 2010 November 3 Solar Eruption

    Get PDF
    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion - an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from ~150-690 km/s with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal lightcurve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be 10^2 km/s with outflow speeds ranging from 10^2-10^3 km/s - indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops - presumably exiting the reconnection site.Comment: 31 pages, 13 figures, 1 table, Accepted to ApJ (expected publication ~July 2012

    Physical Conditions in the Inner Narrow-Line Region of the Seyfert 2 Galaxy NGC 1068

    Get PDF
    The physical conditions in the inner narrow line region (NLR) of the Seyfert 2 galaxy, NGC 1068, are examined using ultraviolet and optical spectra and photoionization models. The spectra are Hubble Space Telescope (HST) Harchive data obtained with the Faint Object Spectrograph (FOS). We selected spectra of four regions, taken through the 0.3" FOS aperture, covering the full FOS 1200A to 6800A waveband. Each region is approximately 20 pc in extent, and all are within 100 pc of the apparent nucleus of NGC 1068. The spectra show similar emission-line ratios from wide range of ionization states for the most abundant elements. After extensive photoionization modeling, we interpret this result as an indication that each region includes a range of gas densities, which we included in the models as separate components. Supersolar abundances were required for several elements to fit the observed emission line ratios. Dust was included in the models but apparently dust to gas fraction varies within these regions. The low ionization lines in these spectra can be best explained as arising in gas that is partially shielded from the ionizing continuum. Although the predicted line ratios from the photoionization models provide a good fit to the observed ratios, it is apparent that the model predictions of electron temperatures in the ionized gas are too low. We interpret this as an indication of additional collisional heating due to shocks and/or energetic particles associated with the radio jet that traverses the NLR of NGC 1068. The density structure within each region may also be the result of compression by the jet.Comment: 38 pages, Latex, includes 5 figures (postscript), to appear in Ap

    Microcanonical entropy inflection points: Key to systematic understanding of transitions in finite systems

    Full text link
    We introduce a systematic classification method for the analogs of phase transitions in finite systems. This completely general analysis, which is applicable to any physical system and extends towards the thermodynamic limit, is based on the microcanonical entropy and its energetic derivative, the inverse caloric temperature. Inflection points of this quantity signal cooperative activity and thus serve as distinct indicators of transitions. We demonstrate the power of this method through application to the long-standing problem of liquid-solid transitions in elastic, flexible homopolymers.Comment: 4 pages, 3 figure

    An exact universal amplitude ratio for percolation

    Get PDF
    The universal amplitude ratio R~Îľ\tilde{R}_{\xi} for percolation in two dimensions is determined exactly using results for the dilute A model in regime 1, by way of a relationship with the q-state Potts model for q<4.Comment: 5 pages, LaTeX, submitted to J. Phys. A. One paragraph rewritten to correct error

    Ising tricriticality and the dilute A3_3 model

    Full text link
    Some universal amplitude ratios appropriate to the Ď•2,1\phi_{2,1} peturbation of the c=7/10 minimal field theory, the subleading magnetic perturbation of the tricritical Ising model, are explicitly demonstrated in the dilute A3_3 model, in regime 1.Comment: 8 pages, LaTeX using iop macro

    Ultrafast effective multi-level atom method for primordial hydrogen recombination

    Get PDF
    Cosmological hydrogen recombination has recently been the subject of renewed attention because of its importance for predicting the power spectrum of cosmic microwave background anisotropies. It has become clear that it is necessary to account for a large number n >~ 100 of energy shells of the hydrogen atom, separately following the angular momentum substates in order to obtain sufficiently accurate recombination histories. However, the multi-level atom codes that follow the populations of all these levels are computationally expensive, limiting recent analyses to only a few points in parameter space. In this paper, we present a new method for solving the multi-level atom recombination problem, which splits the problem into a computationally expensive atomic physics component that is independent of the cosmology, and an ultrafast cosmological evolution component. The atomic physics component follows the network of bound-bound and bound-free transitions among excited states and computes the resulting effective transition rates for the small set of "interface" states radiatively connected to the ground state. The cosmological evolution component only follows the populations of the interface states. By pre-tabulating the effective rates, we can reduce the recurring cost of multi-level atom calculations by more than 5 orders of magnitude. The resulting code is fast enough for inclusion in Markov Chain Monte Carlo parameter estimation algorithms. It does not yet include the radiative transfer or high-n two-photon processes considered in some recent papers. Further work on analytic treatments for these effects will be required in order to produce a recombination code usable for Planck data analysis.Comment: Version accepted by Phys. Rev. D. Proof of equivalence of effective and standard MLA methods moved to the main text. Some rewording

    Magnetic Correlation Length and Universal Amplitude of the Lattice E_8 Ising Model

    Full text link
    The perturbation approach is used to derive the exact correlation length ξ\xi of the dilute A_L lattice models in regimes 1 and 2 for L odd. In regime 2 the A_3 model is the E_8 lattice realisation of the two-dimensional Ising model in a magnetic field h at T=T_c. When combined with the singular part f_s of the free energy the result for the A_3 model gives the universal amplitude fsξ2=0.061 728...f_s \xi^2 = 0.061~728... as h→0h\to 0 in precise agreement with the result obtained by Delfino and Mussardo via the form-factor bootstrap approach.Comment: 7 pages, Late

    A New Look At Carbon Abundances In Planetary Nebulae. III. DDDM1, IC 3568, IC4593, NGC 6210, NGC 6720, NGC 6826, & NGC 7009

    Get PDF
    This paper is the third in a series reporting on a study of carbon abundances in a carefully chosen sample of planetary nebulae representing a large range in progenitor mass and metallicity. We make use of the IUE Final Archive database containing consistently-reduced spectra to measure line strengths of C III] 1909 along with numerous other UV lines for the planetary nebulae DDDM1, IC 3568, IC 4593, NGC 6210, NGC 6720, NGC 6826, & NGC 7009. We combine the IUE data with line strengths from optical spectra obtained specifically to match the IUE slit positions as closely as possible, to determine values for the abundance ratios He/H, O/H, C/O, N/O, and Ne/O. The ratio of C III] 1909/C II 4267 is found to be effective for merging UV and optical spectra when He II 1640/4686 is unavailable. Our abundance determination method includes a 5-level program whose results are fine-tuned by corrections derived from detailed photoionization models constrained by the same set of emission lines. All objects appear to have subsolar levels of O/H, and all but one show N/O levels above solar. In addition, the seven planetary nebulae span a broad range in C/O values. We infer that many of our objects are matter bounded, and thus the standard ionization correction factor for N/O may be inappropriate for these PNe. Finally, we estimate C/O using both collisionally-excited and recombination lines associated with C+2 and find the well established result that abundances from recombination lines usually exceed those from collisionally-excited lines by several times.Comment: 36 pages, 7 tables, 2 figures, latex. Tables and figures supplied as two separate postscript files. Accepted for publication in Ap
    • …
    corecore